Use a Equality Postulate to make a true conclusion and state which postulate you used.

1. Given: AM + SR = CD + SR

2. Given: m < 2 = m < 4

$$m < 5 = m < 6 + m < 4$$

Conclusion:

Conclusion:

Postulate: _____

Postulate:

3. Explain how the Addition Postulate is used differently than the Angle Addition Postulate.

Complete the missing parts of the proof.

- 4. Given: $\overline{AD} \cong \overline{BC}$
 - $\overline{FD} \cong \overline{BG}$

Prove: $\overline{AF} \cong \overline{CG}$

Statements	Reasons
1. $\overline{AD} \cong \overline{BC}$	1. Given
2.	2. Given
$3. \overline{AF + FD = CG + BG}$	3. Segment Addition
4.	4
5. $\overline{AF = CG}$	5. Subtraction

Complete a Two-column proof.

5. Given: <u>FGAS</u>

 $\overline{FG}\cong \overline{SA}$

Prove: $\overline{FA} \cong \overline{SG}$

Hint: Is there a common part?

Is this addition or subtraction method?

6. Given: \overline{FGAS} $\overline{FA} \cong \overline{SG}$

Prove: $\overline{FG} \cong \overline{SA}$

Hint: Is there a common part? Is this addition or subtraction?

7. Given: \overline{AFEGB}

E midpoint of $\overline{\mathit{FG}}$

$$\overline{AF}\cong \overline{GB}$$

Prove: $\overline{AE} \cong \overline{BE}$

8. Prove: "Congruent angles have congruent Complements."

Hint: Use the picture and assume $\angle 1 \cong \angle 2$, m $\angle ABC=90^{\circ}$, m $\angle PQR=90^{\circ}$.

