\qquad
\qquad

Use a Equality Postulate to make a true conclusion and state which postulate you used.

1. Given: $A M+S R=C D+S R$
2. Given: $\begin{aligned} m<2 & =m<4 \\ m<5 & =m<6+m<4\end{aligned}$

Conclusion: \qquad Conclusion: \qquad
Postulate: \qquad Postulate: \qquad
3. Explain how the Addition Postulate is used differently than the Angle Addition Postulate.

Complete the missing parts of the proof.

4. Given: $\overline{A D} \cong \overline{B C}$
$\overline{F D} \cong \overline{B G}$
Prove: $\overline{A F} \cong \overline{C G}$

Complete a Two-column proof.

5. Given: $\overline{F G A S}$

$$
\overline{F G} \cong \overline{S A}
$$

Prove: $\overline{F A} \cong \overline{S G}$
Hint: Is there a common part?
Is this addition or subtraction method?

6. Given: $\overline{F G A S}$

$$
\overline{F A} \cong \overline{S G}
$$

Prove: $\overline{F G} \cong \overline{S A}$

Hint: Is there a common part?
Is this addition or subtraction?
7. Given: $\overline{A F E G B}$

E midpoint of $\overline{F G}$
$\overline{A F} \cong \overline{G B}$
Prove: $\overline{A E} \cong \overline{B E}$

8. Prove: "Congruent angles have congruent Complements."

Hint: Use the picture and assume
$\angle 1 \cong \angle 2, \mathrm{~m} \angle \mathrm{ABC}=90^{\circ}, \mathrm{m} \angle \mathrm{PQR}=90^{\circ}$.

